
ORIGINAL PAPER

Redactable Signatures for Signed CDA Documents

Zhen-Yu Wu & Chih-Wen Hsueh & Cheng-Yu Tsai &
Feipei Lai & Hung-Chang Lee & Yufang Chung

Received: 24 October 2010 /Accepted: 7 December 2010
Springer Science+Business Media, LLC 2010

Abstract The Clinical Document Architecture, introduced
by Health Level Seven, is a XML-based standard intending
to specify the encoding, structure, and semantics of clinical
documents for exchange. Since the clinical document is in
XML form, its authenticity and integrity could be guaran-
teed by the use of the XML signature published by W3C.
While a clinical document wants to conceal some personal
or private information, the document needs to be redacted.
It makes the signed signature of the original clinical
document not be verified. The redactable signature is thus

proposed to enable verification for the redacted document.
Only a little research does the implementation of the
redactable signature, and there still not exists an appropriate
scheme for the clinical document. This paper will investi-
gate the existing web-technologies and find a compact and
applicable model to implement a suitable redactable
signature for the clinical document viewer.

Keywords Clinical document architecture . Health level
seven . XML signature . Redactable signature .

Implementation

Introduction

With the rapid development of the Internet, various
technologies for applications are maturing, leading to the
digitization and electronic orientation of our daily-life
activities, such as e-commerce, e-medicine, e-banking,
e-government, and e-society. In region of e-medicine, these
developments, including the use of the healthcare smart
cards, digital certificates and signatures for medicine
applications, electronic patient records and prescription
records, and so on, have come to mature and been used in
most hospitals or medical institutes during the last decade.
This field, nonetheless, remains as one of the most popular
researches.

A clinical document, one type of electronic patient
records contains highly sensitive personal health informa-
tion, its authenticity and integrity need to be ensured while
the data are exchanged over insecure networks. This has
increased the high attentions on secure medical data
exchange among hospitals or other healthcare organiza-
tions. The Clinical Document Architecture (CDA) proposed
by the Health Level Seven International (HL7) [1]

Z.-Y. Wu (*) :C.-W. Hsueh :C.-Y. Tsai : F. Lai
Department of Computer Science and Information Engineering,
National Taiwan University,
Taipei, Taiwan
e-mail: d96922021@ntu.edu.tw

F. Lai
Department of Electrical Engineering,
National Taiwan University,
Taipei, Taiwan

H.-C. Lee
Department of Information Management, Tamkang University,
Taipei, Taiwan

F. Lai
Graduate Institute of Biomedical Electronics and Bioinformatics,
National Taiwan University,
Taipei, Taiwan

Y. Chung
Department of Electrical Engineering, Tunghai University,
Taipei, Taiwan

C.-W. Hsueh
Graduate Institute of Networking and Multimedia,
National Taiwan University,
Taipei, Taiwan

J Med Syst
DOI 10.1007/s10916-010-9639-0

nowadays has been the standard for interchanging clinical
documents among heterogeneous systems in the area of
healthcare.

There already exists a technology called digital
signature for secure data exchange. A digital signature
is basically a scheme for assuring the authenticity and
integrity of a digital message or document. It means that
a message or document recipient can verify the message
or document by his individual signature and then confirm
messages not being interpolated during transit. Such
technologies have also been applied to CDA documents
by using the XML Signature (XML-DSig) published by
W3C [2].

Nevertheless, appropriate alterations of some signed
clinical documents should be allowed because privacy
requirements are there other than the integrity of the
document. Two scenarios about protecting the privacy of
patients are considered. First is the question of morality.
From an empathy perspective, the condition or illness of
patients should not be publicly disclosed, no matter what
disease they have or might have (especially sexually
transmitted diseases, and mental illnesses); they would
certainly like to keep them private, other than from their
physicians. Secondly, stemming from privacy protection, a
patient can be assured of the security of his clinical data for
the public use for medical research by institutions in order
to find better medical treatment to treat the illness [3, 4].
This may be the biggest advantage that can be gained from
ensuring patients’ privacy [5].

Therefore, a clinical document of a patient concealed
some personal or private information is required, i.e. the
de-identification process. However, as the procedures of
de-identification are done digitally, the signed XML-DSig
of the original document will not be verified correctly for
the de-identified document. The same situation would also
happen while partial contents of a document are given to
another physician for some other diagnostic opinions.
These are named the digital document sanitizing problems
as well [6]. Some discussions about these problems are
proposed in [7] and [8].

The redactable signature, a signature allows users to
execute redaction technology for protecting the privacy but
can still confirm the authenticity of digital documents [9,
10], intends to model a situation where a censor can delete
certain substrings of a signed document without destroying
the ability of the recipient verifying the integrity of the
resulting document, also named redacted document [11].
More specifically, the redactable signature scheme allows
the censor to remove parts of the document and then inserts
a special symbol representing the location of the deletion so
that the document can still be verified.

Some related research about redactable signatures is
introduced in the following. In fact, redactable signatures

are examples of homomorphic signatures which were
introduced by Rivest in his talks on Combridge College
[12] and formalized by Johnson et al. Micali and Rivest
also proposed a transitive signature scheme as the first
construction of homomorphic signatures [13]. The notions
on homomorphic signatures could be traced back to
incremental cryptography, introduced by Bellare, Goldreich
and Goldwasser [14, 15]. Subsequently, Johnson et al. [11]
introduced redactable signature schemes which enabled the
verification of a redacted signed document. Signature
scheme with similar property has also been proposed for
XML documents [16]. And various redactable signatures
and related signature schemes are continually proposed
[7, 8, 17–19].

The majority of research on redactable signatures and
related signature schemes focus on the theoretical
definitions and models, and only a little research has
been done on the implementation. For achieving the goal
of using the redactable signatures to protect privacy in
reality and not research by theoretical interests, the main
purpose of this paper is to investigate a feasible solution
to implement the applicable redactable signature scheme
for the CDA document. Moreover, it is undertaken to
understand how modern web technology could help
improve the medicine environments to suggest practical
implications of this area.

With regard to the needs of the implementation, since the
redactable signature requires lots of expensive computa-
tions, the CPU speed, the space of memory or hard disks,
and the network bandwidth are suggested to be as good as
possible. For example, the Intel Core i3-550 CPU, 4 G
memory, and 320 GB hard disk are used to start the
implementation in this study. Moreover, Python, a popular
programming language nowadays, is chosen to develop the
signature and run on the Windows 7 operation system. The
more details will be introduced in Section “Proposed
methodology”.

The rest of this paper is organized as follows. Section
“Preliminary” introduces the CDA standard and the related
background knowledge of redactable signatures. Section
“Proposed methodology” illustrates the proposed method-
ology for implementing the redactable signature satisfying
the needs of privacy and security. Following, evaluations of
the proposed approach are shown in Section “Analysis of
proposed approach”, and conclusions are drawn in Section
“Conclusions and future work”.

Preliminary

This section first provides a brief overview of the CDA
standard, and some background knowledge of public-key
cryptosystem and digital signature. Then, some information

J Med Syst

about the W3C recommendation of XML-Signature syntax
and processing is followed. Finally, the concept of redactable
signature and its related knowledge are described.

Clinical document architecture

The CDA is an XML-based markup standard intending to
specify the encoding, structure, and semantics of clinical
documents for exchange [20]. A CDA document uses the
XML schema to wrap its contents and is defined to have the
following six characteristics by HL7.

1. Persistence: A clinical document continues to exist in
an unaltered state, for a time period defined by local
and regulatory requirements.

2. Stewardship: A clinical document is maintained by an
organization entrusted with its care.

3. Potential for authentication: A clinical document is an
assemblage of information that intends to be legally
authenticated.

4. Context: A clinical document establishes the default
context for its contents.

5. Wholeness: The authentication of a clinical document
applies to the whole and does not apply to portions of
the document without the full context of the document.

5. Human readability: A clinical document is human
readable.

A CDA document has the ability to contain any kinds of
clinical contents, such as discharge summaries, referrals, care
provision information notes, and so on [21]. Figure 1 shows
an example of major components of a CDA document.

In recent years, considerable concerns have been arisen
over the use of the CDA among different applications and
heterogeneous system environments [22–24]. Specifically,
the CDA is used for exchanging the clinical documents
between different hospitals and healthcare organizations.

Public-key cryptosystem

The concept of public-key cryptosystems was first pro-
posed by Diffie and Hellman in 1976 [25], which opened a
new direction on cryptography development. Since then,
many researchers started proposing various types of public-
key cryptosystems.

Public-key cryptography is a kind of asymmetrical
encryption technique. Each party in such cryptosystem
holds two keys; one is the public key used for encrypting a
datum and the other is the private key used for decryption.
Usually, a cryptosystem is used to protect the data
transmitted through the Internet from being tampered by
an illegal third party. For instance, a document is encrypted
by a receiver’s public key before it is sent out. Thus, the
encrypted document can only be derived by a receiver who
uses his own private key. It is very difficult for an illegal
party to decrypt the contents of the document, except when
the receiver’s private key is obtained and used for
decrypting the message. Although the cryptosystem can
make data transmission become more confidential and
convenient, both the sender and the recipient must hold
each other’s key sets at the same time in order to perform
the encryption and decryption tasks. This is not practical
enough. Therefore, a public-key infrastructure (PKI) meth-
od is proposed to solve this impractical problem [26].

A PKI scheme is constructed on the basis of the public-
key cryptosystem framework so as to offer all the security
requirements, including authentication, confidentiality,
message integrity, and non-repudiation. Certificate authority
(CA) is a part of the PKI scheme. The CA is a Trusted Third
Party (TTP) in the scheme that manages and issues the
certificates to the requesters and provides services such as
keeping public keys, offering directory service, and issuing
certificates. Under the PKI scheme, both parties are capable of
exchanging information securely and safely with each other
on the network.Fig. 1 Major components of a CDA document

J Med Syst

Digital signature

All specific digital contents are capable of being encrypted
and decrypted to ensure their integrity and non-repudiation.
With the agreement from all related parties, digital
signatures are valid to be used in private communication.
The concept of digital signatures originally coming from
cryptography is a way to encrypt or decrypt senders’ text
messages by applying a hash function to keep the messages
secure when being transmitted [9, 10, 27].

A one-way hash function is a mathematical algorithm,
which takes any length of a text message as the input and
gives an output in a specific length. Its main function keeps
the encrypted output very difficult being derived by a third
party [26]. Based on one-way hash functions, a digital
signature scheme can be done as follows.

Based on a Public-key cryptosystem, a sender firstly
uses a one-way hash function to convert an electronic
record into a text message of a specific length, which is
called the message digest [10]. Then, the sender will use his
private key to sign on the message digest generating a
digital signature. As the recipient receives the message and
its signature, he can use the sender’s public key to verify
the signature for the message through the hash function. If
the calculated message is not the same as the message itself,
it is possible that a wrong document is outputted because of
tampering. On the contrary, it is the valid document that the
recipient wants. Obviously, this method can help to ensure
data transmission security. Figure 2 demonstrates the
procedure of signing a digital signature.

XML signature

The XML signature, also called XMLDsig, XML-DSig, and
XML-Sig, is a W3C recommendation that defines XML
syntax for the digital signature [2]. As shown in Fig. 3, the
XML digital signature is represented by the Signature
element which has the following structures, as “?” denoting
zero or one occurrence, “+” denoting one or more
occurrences, and “*” denoting zero or more occurrences.

Generally speaking, the XML signature has the following
features:

1. TheXML signature can sign any kinds of resources which
are addressable by a Uniform Resource Identifier (URI)
[28]. The resource could be elements within the same
XML document (in this specification, a ‘same-docu-
ment’ reference is defined as a URI-Reference consisting
of a hash sign ‘#’ followed by a fragment or alternatively
consisting of an empty URI) or elements in an external
XML document identified by the URI, even a non-XML
resource, e.g. image. The XML signature is also applied
to everything which can be located by the URI. In other
words, the signature target could be dynamic.

2. The XML signature can sign the entire XML docu-
ment, or only the selected elements.

3. The XML signature can support both asymmetric key
algorithms (Digital Signatures) and symmetric key
algorithms (HMAC) for signing.

From above descriptions, it clearly shows that the XML
signature supports signing the various external resources of

Fig. 2 The procedure of signing
a digital signature

J Med Syst

the XML documents, the authenticity and integrity of the
CDA document and is thus guaranteed.

Redactable signature

The redactable signature is a signature allowing users to
execute redaction technology for protecting the privacy but
still being able to confirm the authenticity of digital
documents [9, 10]. In other words, the redactable signature

incorporates the features of redaction technology and the
properties of digital signatures. The signature intends to
model a situation where a censor can delete certain
substrings of a signed document without destroying the
ability of the recipient to verify the integrity of the resulting
(redacted) document [11]. More specifically, the redactable
signature scheme allows the censor to remove parts of the
document and then inserts a special symbol representing the
location of the deletion that the document can still be
verified.

The main difference between a conventional digital
signature scheme and a redactable signature scheme is that
the hash function is applied to the entire document in the
former scheme, whereas in the latter, the document is firstly
split into redactable parts and the hash function is then
applied to each of them. Finally, the signature is generated
through encrypting those hashes using the signer’s private
key. The signing workflow of a redactable signature scheme
is shown in Fig. 4.

How the redaction works in the redactable signature is
further shown in Fig. 5. The basic idea of redaction is that
(a) the censor may delete some portions of a document
which belongs to the redactable parts and (b) replace
them with the corresponding hashes. Since the redactable
parts are filled with specific hash values from Step (b),
the recipient can successfully execute the whole verifi-
cation process by using the same signature without
errors. In Contrast with the common digital signature, if
some portions of the document are removed, the hash
function could not be calculated and thus the original
signed signature is not verifiable with the redacted
document.

Fig. 3 Major components of an XML signature

Fig. 4 Signing workflow of a
redactable signature scheme

J Med Syst

Proposed methodology

In this section, the implementation of the applicable
redactable signature, i.e. a CDA document viewer, which
is capable of using the redactable signature to sign CDA
documents, is demonstrated. Firstly, various possible
implementation approaches are discussed. Then, some
useful advantages among them are picked for the integra-
tion. Finally a feasible model for implementing the
redactable signature is proposed.

Existed possible approaches

There are basically two kinds of approaches to implement the
redactable signature, namely conventional program approach
and browser-based approach. The implemented programming
languages, such as C, C++, C#, Java, Perl, PHP, Python, and
so on, are classified as the conventional program approach.
The conventional program approach has high flexibility since
designers have full control of the environment when running
the program. Another approach, the browser-based approach,
contains the approaches with the use of browser, e.g. the web
application, Adobe Flash, or the Google Native Client [29].
This approach has high portability since web browsers are
available for various platforms.

To let the redactable signature model possess high
portability and flexibility, after investigating the different
approaches above mentioned, an appropriate signature
architecture which can integrate both the conventional
program and browser-based approaches is proposed in this
study. Python, an excellent programming language avail-
able on every platform and able to maintain the acceptable
performance, is thus decided to be a tool for practicing the
signature. And, other relevant technologies are also applied

to satisfy the implementation needs. All of them will be
introduced in the following sections.

Implementation

The basic idea of the proposed methodology to implement
the CDA document viewer that is capable of dealing with a
redactable signature is shown in Fig. 6.

The proposed viewer has the following components.

1. Viewer, it is for converting CDA documents into html
format that browsers could handle with.

2. Local signature daemon, the local signature daemon is
basically a tiny web server that handles the requests
from local browser and then generates digital signatures
or message digests for the given requests.

For better performance of the conventional program
approach while retaining the portability of the browser-
based approach at the development of viewer and local
signature daemon, the objective is to write programs which
do one thing and do it well (the UNIX philosophy);
technologies such as the XPath [30], JSON [31], and the
principle of least privilege [32] are also used in the
development. Those two components will be introduced
in detail in the following sections.

Long polling

Asynchronous JavaScript and XML (AJAX) is a group of
interrelated web development techniques used in the client-
side to create interactive web applications. With AJAX,
web applications can retrieve data from the server asyn-
chronously in the background without interfering with the
display and behavior of the existing web page.

Fig. 5 Demonstration of
a redactable signature being
verified

J Med Syst

The AJAX technology is applied in the viewer compo-
nent that the user experience depends on the response time
of corresponding operation. Figure 7 shows that, with
polling, an AJAX-enabled application will poll the server
for data regardless whether the data on the server side are
changed or not.

Taking online chat rooms as an example, clients poll the
server every N seconds to see if new messages are
available. More specifically, the browser requests the server
for updating the contents during every set interval. One
problem might occur when no new message comes into the

server, the response of the request will not contain any data
and become meaningless.

For solving such problem, a better technique, called long
polling, is shown in Fig. 8. Long polling is an AJAX request
in which the request and the response are both treated as
asynchronous operations. Instead of accepting the request
and immediately processing to return a result, the server
accepts the request and holds it until some other event occurs,
providing data to send as a response to the original request.

Taking the web-based chatroom for example as well,
clients would open a persistent connection waiting for the

Fig. 8 AJAX with long pollingFig. 7 AJAX with polling

Fig. 6 The proposed CDA
viewer architecture

J Med Syst

server to push data till it is available, regardless whether the
browser sends out the request or not.

Viewer component

In terms of the implementation of the viewer component,
the technology of Extensible Stylesheet Language Trans-
formations (XSLT), which is an XML-based language used
for the transformation of XML documents, is applied. It
will transform the XML documents into some other
different structured documents such as HTML or
XHTML that the browsers can support. Note that some
JavaScript code shall be inserted into the resulting
documents during the transformation process, which lets
the browser be able to interact with the loaded CDA
documents and enable to verify and redact the selected
parts of the original documents.

As shown in Fig. 9, the use of XSLT will change a
XML-based CDA document into a HTML web page
displayed in the browser. On the contrary, a CDA document
without transformation is presented as Fig. 10.

Local signature daemon component

One applied format and principle should be introduced first
in this section. JSON (JavaScript Object Notation), a
lightweight data-interchange format, is easy for humans to
read and write as well as easy for machines to parse and
generate. It is based on a subset of the JavaScript
programming language, standard ECMA-262 3rd edition.
JSON is a text format, a completely independent language,

but uses conventions that are familiar to programmers of
the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These properties
make JSON a good data-interchange format [1]. When
users apply JSON during AJAX requests, the transmission
costs are reduced. In addtion, JSON has good interopera-
bility with other structured formats, such as XML that can
be used in the redaction process.

Principle of least privilege, defined by the Department of
Defense Trusted Computer System Evaluation Criteria, is a
declaration that requires each subject in a system to be
granted the most restrictive set of privileges (or lowest
clearance) needed for the performance of authorized tasks.
The application of this principle can limit the damage
which results from accident, error, or unauthorized use [24].
The least privilege approach provides the following
benefits. In addition to the reduced risk from attack by
malicious software, these benefits include:

1. Increased security.
2. Increased manageability.
3. Increased productivity.
4. Reduced costs.
5. Reduced piracy and legal liability issues.

Clearly, when a program follows the principle of least
privilege, it is limited in terms of changing a system. The
stability and security of the system should be increased so as
to obtain various benefits mentioned above.

The suitable conventional program approach is applied
to implement the component of local signature daemon.
Although the approach benefits full control, the security

Fig. 9 A transformed CDA
document

J Med Syst

concerns need to be dealt with properly. Hence the
implementatioin shall follow the principle of least
privilege that rises the stability and security of the
component. In addition, since the local signature daemon
acts as a web server, its address is bound to 127.0.0.1, a
local loopback interface so that threats from the Internet may
be completely avoided.

Note that in the UNIX-like systems, it requires the root
privilege to bind port numbers if they are smaller than
1024. To avoid the similar problem in the implementation,
the port number of the daemon is greater than 1024 and

made no conflicts in the existing daemons. Figure 11
demonstrates the basic concept of the porposed daemon.
The workflow is introduced in Section “Workflow”.

Workflow

This section describes how the proposed approach works.
The user interface of the proposed viewer component is
shown in Fig. 12. When the user executes the redaction in a
clinical document, a redacted document is presented as
Fig. 13. Figure 14 shows a portion of the redacted CDA

Fig. 10 A CDA document
without transformation

Fig. 11 Local signature daemon
component of proposed CDA
viewer

J Med Syst

document without transformation. The following is the flow
of the whole process.

[The redaction process]

Step 1: The user receives a CDA document signed by the
HIS, as Fig. 10 shows.

Step 2: The user puts the received CDA file to the specified
location enabling the local signature daemon to have
access rights for it.

Step 3: The user opens the browser and navigates to http://
127.0.0.1:port/viewer/.

Step 4: The user can view the well-transformed clinical
document on the browser, as Fig. 9 shows.

Step 5: Redaction is triggered when the user clicks on the
button labeled redact.

Step 6: The JavaScript function is inserted during the
transformation handling the button event. It
shall issue an AJAX request and send the
encoding JSON strings corresponding to the
portion of the original CDA document (in
XML form) to the local signature daemon, as
Fig. 11 shows.

Step 7: The request is decoded to strings of XML form,
and a message digest is then calculated by the
local signature daemon. Finally, an AJAX
response, including the message digest, is sent
back to the browser (note that the long-polling
technology is used that once the digest calcula-
tion is done, the viewer will get the result
immediately). The flowchart is also shown in
Fig. 11.

Step 8: The corresponding message digest is then ex-
changed with the part the user desires to redact,
as Fig. 14 shows.

Step 9: End.

[The verification process]

Step 1: The verifier receives a CDA document that is
redacted by the other user.

Step 2: The verifier puts the received CDA file to the
specified location enabling the local signature
daemon to have access rights for it.

Step 3: The verifier opens the browser and navigates to
http://127.0.0.1:port/viewer/.

Step 4: The verifier can view the well-transformed clinical
document on the browser, as shown in Fig. 13.
Note that the corresponding parts of redaction
done by other user would be masked.

Step 5: Verification is triggered when verifier clicks on the
button labeled verify.

Step 6: The JavaScript function is inserted during trans-
formation handling the button event. It shall issue
an AJAX request and send the encoding JSON
strings corresponding to message digests of the
redacted parts of CDA document to the local
signature daemon.

Step 7: The request is decoded to the message digests. These
message digests will combine with other parts
message digests hashed from non-redacted parts of
the original CDA document to form a completed
message digest for verification by the local signature
daemon. Then, the daemon can verify the validity of

Fig. 12 The User Interface
of proposed CDA viewer

J Med Syst

http://127.0.0.1:port/viewer/
http://127.0.0.1:port/viewer/
http://127.0.0.1:port/viewer/

the signature (the detailed process is shown in
Fig. 4). Finally, an AJAX response, containing the
verification result, is sent back to the browser (note
that the long-polling technology is used that once
the signature verification is done, the viewer will
get the result immediately).

Step 8: The validity of signature is verified.
Step 9: End.

Below shows an example to explain the whole processes of
the redactable signature scheme. First of all, if some patient
wants to conceal some private information appeared in the
signed XML-based CDA document, he would execute the
redaction process. He can easily open the document by web
browser since the viewer component of the scheme has
converted it into html format as Fig. 12 shows. Supposing the
patient would not like other people to know who his
consultant is, he can click the redact button to eliminate
the information about the consultant. The component of local

signature daemon will automatically find the specific hash
value and replace the consultant’s name with it to complete
the redacting action. The result is shown in Figs. 13 and 14,
and all information about the consultant is gone and replaced
by the specific value that common users are hard to
understand.

When a verifier receives the redactable document, he can
execute the verification process to confirm the correctness
of the document by using the original signature, i.e.
knowing the document indeed comes from the signer. He
opens the document yet does not view the information of
the redactable parts, as Fig. 13 shows. He clicks the verify
button, and then the component of local signature daemon
automatically verifies the document. The component will
combine all message digests including redacted and non-
redacted parts of the CDA document to form a completed
message digest for verification. Then, the daemon can
check the combined digest whether it is equal to the
original digest decrypted by using the signer’s public key. If

Fig. 14 A portion of
the redacted CDA document
without transformation

Fig. 13 A redacted CDA
document

J Med Syst

both of them are the same, the validity of the signature and
document are guaranteed.

Analysis of proposed approach

In this section, the proposed approach is evaluated through
three aspects, including the portability and flexibility of the
program and the complexity to implement the signature and
its demanding CDAviewer. The higher portability of program
the approach gains, the more platforms the web browser can
be available. The development costs are thus decreased. The
same situation, the higher flexibility of program the approach
owns, the more control rights can be kept by the designers.
The bigger programming problems would be relatively
reduced. Final, the lower complexity, i.e. the difficulty of
implementation, the approach guarantees, the lower time and
money cost the developers need to pay out.

Portability

The proposed CDA viewer has two significant components
as viewer and local signature daemon. The portability of

viewer and local signature daemon would be discussed
respectively. In terms of viewer, the property of portability
should not be the issue since there are various web
browsers available on different platforms. As to the
implementation of the local signature daemon, the designed
programming language chooses Python which can be
available on every platform and maintain the acceptable
performance, this will add the daemon’s productivity and
lower its maintenance costs. Therefore, the portability is
achieved in the CDA viewer.

Flexibility

When designers implement the redactable signature by the
conventional program approach, their program will have
high flexibility as they have full control of the environment
during running the program. But in terms of a browser-
based approach, its flexibility is usually limited by the
corresponding web browser or browser plug-ins such as
Adobe Flash Player.

To make this approach possess the properties of
portability and flexibility, the local signature daemon
component of the proposed viewer is implemented based

Fig. 15 Partial codes about
implementing redactable
signatures

Portability Flexibility Complexity

Our approach High High Low

Web Application High Medium High

Conventional Program High variance High High variance

Adobe Flash Medium Medium High variance

JavaScript High Medium High

Table 1 Comparison table
with other implementing
approaches

J Med Syst

on both the conventional program approach and the
browser-based approach. Therefore, the approach can do
anything that a conventional program could do. Further-
more, performance-intensive functionalities can also be
implemented into the daemon, which then is executed
through AJAX calls.

Difficulty of implementation

The whole architecture of CDA viewer contains the viewer
component and the local signature daemon component
(which deals with business logic). The viewer component is
basically a defined XSLT, and all browsers would deal with
the transformed XHTML or HTML file well. Without
considering the fancy user interface, the difficulty of the
implementation for the viewer component is eliminated. As
to the local signature daemon component, it only needs to
deal with signing and message digesting. The programming
difficulty thus depends on the chosen programming
language, i.e. Python, an excellent programming language
available on every platform and able to maintain the
acceptable performance. Figure 15 shows the partial codes
about implementing the proposed redactable signature by
Python programming language. The main function of these
codes will combine with each hash function responded to
the redactable part of the CDA document to form a
redactable signature.

Summing up the above descriptions, a comparison table
with other implementing approaches was drawn, as shown
in Table 1. C, C#, C++, Java, and etc. are the conventional
program approach. It has high flexibility since designers
have full control of the environment when running the
program. However, other properties, such as portability and
complexity are high variance. A high efficiency might be
presented; but unfavorable results could possibly appear.
On another side, the web application, Adobe Flash, or
JavaScript are the browser-based approach. This kind of
approaches combines with the use of browser, and is
available for various platforms so as to have high
portability. But their flexibility and complexity outperform
other approaches. Ours, on the contrary, with the analysis of
the three concerns mentioned above shows the implemen-
tation being practicable.

Conclusions and future work

In this paper, a compact and applicable model for
implementing a redactable signature-capable CDA docu-
ment viewer by using the existing web-technologies was
proposed. In this model, the possible overhead of the
viewer caused by the conventional program approach is
eliminated via dividing the whole architecture into two

parts; the viewer component deals with the presentation,
whereas the daemon component processes the business
logic. In addition, the smoothness of the user interaction
depends on the high speed of local signature daemon
component, and the delay problems between AJAX
requests are solved by the technique of long polling.

This CDA viewer is also compatible with the applica-
tions of the portable CDA for the secure clinical-document
exchange that any XML-based applications may have the
needs of redactable signatures.

In this approach, the redaction process basically
replaces hashes with the corresponding redacted parts,
that if a user tends to redact much information, the size
of resulting document could become very large. In the
future, the information may be redacted based on their
common parent so as to make less hashes be generated.
Therefore, the proposed methodology can operate more
efficiently.

Acknowledgement This work was supported partially by National
Science Council, Taiwan under Grants NSC 99-2221-E-029-023.

References

1. The Health Level Seven International home page. Available at
http://www.hl7.org/.

2. Eastlake, D., Solo, D., and Reagle, J., XML-signature syntax and
processing. first edition of a recommendation, W3C, 2002. Available
at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

3. Tsumoto, S., Mining diagnostic rules from clinical databases using
routh sets andmedical diagnostic model. Inf Sci 162(2):65–80, 2004.

4. Hsu, C.-C., and Ho, C.-S., A new hybrid case-based architecture
for medical diagnosis. Inf Sci 166(1–4):231–247, 2004.

5. Ulieru, M., Hadzic, M., and Chang, E., Soft computing agents for
e-Health in application to the research and control of unknown
diseases. Inf Sci 176(9):1190–1214, 2006.

6. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R.,
and Yoshiura, H., Digital documents sanitizing problem. IEICE
Technical Report ISEC2003-20, 2003.

7. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura,
H., Tezuka, S., and Imai, H., Digitally signed document sanitizing
scheme with disclosure condition control. IEICE Trans 88
(1):239–246, 2005.

8. Slamanig, D., and Stingl, C., Disclosing verifiable partial
information of signed cda documents using generalized redactable
signatures. In: e-Health Networking, Applications and Services,
2009. Healthcom 2009, pp. 146–152, 2009.

9. National Institute of Standards and Technology, “Digital signature
standard,” 1994.

10. Rivest, R. L., Shamir, A., and Adleman, L., A method for
obtaining digital signatures and public-key cryptosystems. Commun
ACM 21(2):120–126, 1978.

11. Johnson, R., Molnar, D., Song, D. X., and Wagner, D.,
Homomorphic signature schemes. In: CT-RSA ’02: Proceedings
of the The Cryptographer’s Track at the RSA Conference on
Topics in Cryptology, pp. 244–262, 2002.

12. Rivest, R., Two new signature schemes, Presented at Cambridge
seminar, 2001. Available at http://www.cl.cam.ac.uk/Research/
Security/seminars/2000/rivest-tss.pdf.

J Med Syst

http://www.hl7.org/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.pdf
http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.pdf

13. Micali, S., and Rivest, R., Transitive signature schemes. In: CT-RSA
’02: Proceedings of the The Cryptographer’s Track at the RSA
Conference on Topics in Cryptology, pp. 236–243, 2002.

14. Bellare, M., Goldreich, O., and Goldwasser, S., Incremental
cryptography: The case of hashing and signing. In: Proceedings
of advances in cryptology—Crypto 1994, Vol. 839 of LNCS, pp.
216-233, Springer-Verlag, 1994.

15. Bellare, M., Goldreich, O., and Goldwasser, S., Incremental
cryptography and application to virus protection. In: proceedings
of the 27th ACM Symposium on the Theory of Computing, pp. 45–
56, 1995.

16. Steinfeld, R., Bull, L., and Zheng, Y., Content extraction
signatures. In International Conference on Information Security
and Cryptology 2001, Vol. 2288 of LNCS, pp. 163–205, Springer-
Verlag, 2001.

17. Ateniese, G., Chou, D. H., de Medeiros, B., and Tsudik, G.,
Sanitizable Signatures. In 10th European Symposium on Research
in Computer Security—ESORICS 2005, Vol. 3679 of LNCS, pp.
159–177, Springer-Verlag, 2005.

18. Chang, E. C., Lim, C. L., and Xu, J., Short redactable signatures
using random trees. In: CT-RSA ’09: Proceedings of the The
Cryptographer’s Track at the RSA Conference on Topics in
Cryptology, Vol. 5473 of LNCS, pp. 133–147, Springer-Verlag,
2009.

19. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K.,
Sander, T., Tezoku, S., and Yao, D., Efficient signature schemes
supporting redaction, pseudonymization, and data deidentifica-
tion. In: Proceedings of the 2008 ACM Symposium on Informa-
tion, Computer and Communications Security, ASIACCS 2008,
pp. 353–362, 2008.

20. Dolin, R., Alschuler, L., Boyer, S., Beebe, C., Behlen, F., Biron,
P., and Shabo, A., HL7 clinical document architecture, release 2. J
Am Med Inform Assoc 13(1):30–39, 2006.

21. Huang, K.-H., Hsieh, S.-H., Chang, Y.-J., Lai, F., Hsieh, S.-L.,
and Lee, H.-H., Application of portable CDA for secure clinical-
document exchange. J Med Syst 34(4):531–539, 2010.

22. Chang, Y., Lai, J., Cheng, P., and Lai, F., Portable cda for the exchange
of clinical documents. In: e-Health Networking, Application and
Services, 2007 9th International Conference, pp. 1–5, 2007.

23. Haomin, L., Huilong, D., Xudong, L., and Zhengxing, H., A
clinical document repository for cda documents. In: Bioinfor-
matics and Biomedical Engineering, 2007. ICBBE 2007, pp.
1084–1087, 2007.

24. M. Treins, O. Cure, and G. Salzano, “On the interest of using HL7
cda release 2 for the exchange of annotated medical documents,”
In Computer-Based Medical Systems, 2006. CBMS 2006. 19th
IEEE International Symposium on, pp. 524–532, 2006.

25. Diffie, W., and Hellman, M., New directions in cryptology. IEEE
Trans Inf Theory 22(6):644–654, 1976.

26. Stallings, W., Cryptography and network security: principal and
practices. Prentice Hall, 4th Edition, 2005.

27. ElGamal, T., A public key cryptosystem and signature scheme based
on discrete logarithms. IEEE Trans Inf 31(4):469–472, 1985.

28. Berners-Lee, T., Fielding, R., and Masinter, L., Uniform Resource
Identifier (URI): Generic Syntax, RFC 3986 (Standard), 2005.

29. Yee, B., Sehr, D., Dardyk, G., Chen, J., Muth, R., Ormandy, T.,
Okasaka, S., Narula, N., and Fullagar, N., Native client: A
sandbox for portable, untrusted x86 native code. In: Security and
Privacy, 2009 30th IEEE Symposium on, 2009.

30. Kay, M., Chamberlin, D., Robie, J., Fernandez, M. F., Simeon, J.,
Boag, S., and Berglund, A., XML path language (XPath) 2.0.
W3C recommendation, W3C, Jan. 2007. Available at http://www.
w3.org/TR/2007/REC-xpath20-20070123/.

31. The JSON format home page. Available at http://www.json.org/.
32. Microsoft Developer Network (MSDN), “Applying the principle

of least privilege to user accounts on windows xp,” 2006.

J Med Syst

http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.w3.org/TR/2007/REC-xpath20-20070123/
http://www.json.org/

	Redactable Signatures for Signed CDA Documents
	Abstract
	Introduction
	Preliminary
	Clinical document architecture
	Public-key cryptosystem
	Digital signature
	XML signature
	Redactable signature

	Proposed methodology
	Existed possible approaches
	Implementation
	Long polling
	Viewer component
	Local signature daemon component
	Workflow

	Analysis of proposed approach
	Portability
	Flexibility
	Difficulty of implementation

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

